A NOVEL DEEP LEARNING BASED METHOD FOR DETECTION AND COUNTING OF VEHICLES IN URBAN TRAFFIC SURVEILLANCE SYSTEMS

In intelligent transportation systems (ITS), it is essential to obtain reliable statistics of the vehicular flow in order to create urban traffic management strategies. These systems have benefited from the increase in computational resources and the improvement of image processing methods, especial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2021-06, Vol.XLIII-B2-2021, p.793-800
Hauptverfasser: Majin, J. J., Valencia, Y. M., Stivanello, M. E., Stemmer, M. R., Salazar, J. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In intelligent transportation systems (ITS), it is essential to obtain reliable statistics of the vehicular flow in order to create urban traffic management strategies. These systems have benefited from the increase in computational resources and the improvement of image processing methods, especially in object detection based on deep learning. This paper proposes a method for vehicle counting composed of three stages: object detection, tracking and trajectory processing. In order to select the detection model with the best trade-off between accuracy and speed, the following one-stage detection models were compared: SSD512, CenterNet, Efficiedet-D0 and YOLO family models (v2, v3 and v4). Experimental results conducted on the benchmark dataset show that the best rates among the detection models were obtained using YOLOv4 with mAP = 87% and a processing speed of 18 FPS. On the other hand, the accuracy obtained in the proposed counting method was 94% with a real-time processing rate lower than 1.9.
ISSN:2194-9034
1682-1750
2194-9034
DOI:10.5194/isprs-archives-XLIII-B2-2021-793-2021