Airline Point-of-Care System on Seat Belt for Hybrid Physiological Signal Monitoring
With a focus on disease prevention and health promotion, a reactive and disease-centric healthcare system is revolutionized to a point-of-care model by the application of wearable devices. The convenience and low cost made it possible for long-term monitoring of health problems in long-distance trav...
Gespeichert in:
Veröffentlicht in: | Micromachines (Basel) 2022-11, Vol.13 (11), p.1880 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With a focus on disease prevention and health promotion, a reactive and disease-centric healthcare system is revolutionized to a point-of-care model by the application of wearable devices. The convenience and low cost made it possible for long-term monitoring of health problems in long-distance traveling such as flights. While most of the existing health monitoring systems on aircrafts are limited for pilots, point-of-care systems provide choices for passengers to enjoy healthcare at the same level. Here in this paper, an airline point-of-care system containing hybrid electrocardiogram (ECG), breathing, and motion signals detection is proposed. At the same time, we propose the diagnosis of sleep apnea-hypopnea syndrome (SAHS) on flights as an application of this system to satisfy the inevitable demands for sleeping on long-haul flights. The hardware design includes ECG electrodes, flexible piezoelectric belts, and a control box, which enables the system to detect the original data of ECG, breathing, and motion signals. By processing these data with interval extraction-based feature selection method, the signals would be characterized and then provided for the long short-term memory recurrent neural network (LSTM-RNN) to classify the SAHS. Compared with other machine learning methods, our model shows high accuracy up to 84–85% with the lowest overfit problem, which proves its potential application in other related fields. |
---|---|
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi13111880 |