Improved functionality and potency of next generation BinMLV viral vectors toward safer gene therapy

To develop safer retroviral murine leukemia virus (MLV)-based vectors, we previously mutated and re-engineered the MLV integrase: the W390A mutation abolished the interaction with its cellular tethering factors, BET proteins, and a retargeting peptide (the chromodomain of the CBX1 protein) was fused...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy. Methods & clinical development 2021-12, Vol.23, p.51-67
Hauptverfasser: Van Looveren, Dominique, Giacomazzi, Giorgia, Thiry, Irina, Sampaolesi, Maurilio, Gijsbers, Rik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To develop safer retroviral murine leukemia virus (MLV)-based vectors, we previously mutated and re-engineered the MLV integrase: the W390A mutation abolished the interaction with its cellular tethering factors, BET proteins, and a retargeting peptide (the chromodomain of the CBX1 protein) was fused C-terminally. The resulting BET-independent MLVW390A-CBX was shown to integrate efficiently and more randomly, away from typical retroviral markers. In this study, we assessed the functionality and stability of expression of the redistributed MLVW390A-CBX vector in more depth, and evaluated safety using a clinically more relevant vector design encompassing a self-inactivated (SIN) LTR and a weak internal elongation factor 1α short (EFS) promoter. MLVW390A-CBX-EFS produced like MLVWT and efficiently transduced laboratory cells and primary human CD34+ hematopoetic stem cells (HSC) without transgene silencing over time, while displaying a more preferred, redistributed, and safer integration pattern. In a human mesoangioblast (MAB) stem cell model, the myogenic fusion capacity was hindered following MLVWT transduction, while this remained unaffected when applying MLVW390A-CBX. Likewise, smooth muscle cell differentiation of MABs was unaltered by MLVW390A-CBX-EFS. Taken together, our results underscore the potential of MLVW390A-CBX-EFS as a clinically relevant viral vector for ex-vivo gene therapy, combining efficient production with a preferable integration site distribution profile and stable expression over time. [Display omitted] We follow up on previous work to enable safer gene transfer using integrase-engineered MLV-based vectors in combination with a clinically more relevant vector design (self-inactivated [SIN] LTR and an internal EFS promoter) and were able to demonstrate efficient production, safer integration profile, and stable expression over time in clinically relevant cell models.
ISSN:2329-0501
2329-0501
DOI:10.1016/j.omtm.2021.07.003