HDAC9-mediated epithelial cell cycle arrest in G2/M contributes to kidney fibrosis in male mice

Renal tubular epithelial cells (TECs) play a key role in kidney fibrosis by mediating cycle arrest at G2/M. However, the key HDAC isoforms and the underlying mechanism that are involved in G2/M arrest of TECs remain unclear. Here, we find that Hdac9 expression is significantly induced in the mouse f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-05, Vol.14 (1), p.3007-3007, Article 3007
Hauptverfasser: Zhang, Yang, Yang, Yujie, Yang, Fan, Liu, Xiaohan, Zhan, Ping, Wu, Jichao, Wang, Xiaojie, Wang, Ziying, Tang, Wei, Sun, Yu, Zhang, Yan, Xu, Qianqian, Shang, Jin, Zhen, Junhui, Liu, Min, Yi, Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Renal tubular epithelial cells (TECs) play a key role in kidney fibrosis by mediating cycle arrest at G2/M. However, the key HDAC isoforms and the underlying mechanism that are involved in G2/M arrest of TECs remain unclear. Here, we find that Hdac9 expression is significantly induced in the mouse fibrotic kidneys, especially in proximal tubules, induced by aristolochic acid nephropathy (AAN) or unilateral ureter obstruction (UUO). Tubule-specific deletion of HDAC9 or pharmacological inhibition by TMP195 attenuates epithelial cell cycle arrest in G2/M, then reduces production of profibrotic cytokine and alleviates tubulointerstitial fibrosis in male mice. In vitro, knockdown or inhibition of HDAC9 alleviates the loss of epithelial phenotype in TECs and attenuates fibroblasts activation through inhibiting epithelial cell cycle arrest in G2/M. Mechanistically, HDAC9 deacetylates STAT1 and promotes its reactivation, followed by inducing G2/M arrest of TECs, finally leading to tubulointerstitial fibrosis. Collectively, our studies indicate that HDAC9 may be an attractive therapeutic target for kidney fibrosis. Although accumulating evidence indicates that epithelial cell cycle G2/M arrest is involved in kidney fibrosis, the underlying mechanism remains unclear. Here, the authors show that HDAC9 is upregulated in the fibrotic kidney and promotes epithelial cell cycle arrest in G2/M by regulating STAT1.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-38771-4