In situ observation of new particle formation (NPF) in the tropical tropopause layer of the 2017 Asian monsoon anticyclone – Part 1: Summary of StratoClim results

During the monsoon season of the year 2017 the airborne StratoClim mission took place in Kathmandu, Nepal, with eight mission flights of the M-55 Geophysica in the upper troposphere–lower stratosphere (UTLS) of the Asian monsoon anticyclone (AMA) over northern India, Nepal, and Bangladesh. More than...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics 2021-08, Vol.21 (15), p.11689-11722
Hauptverfasser: Weigel, Ralf, Mahnke, Christoph, Baumgartner, Manuel, Dragoneas, Antonis, Vogel, Bärbel, Ploeger, Felix, Viciani, Silvia, D'Amato, Francesco, Bucci, Silvia, Legras, Bernard, Luo, Beiping, Borrmann, Stephan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During the monsoon season of the year 2017 the airborne StratoClim mission took place in Kathmandu, Nepal, with eight mission flights of the M-55 Geophysica in the upper troposphere–lower stratosphere (UTLS) of the Asian monsoon anticyclone (AMA) over northern India, Nepal, and Bangladesh. More than 100 events of new particle formation (NPF) were observed. In total, more than 2 h of flight time was spent under NPF conditions as indicated by the abundant presence of nucleation-mode aerosols, i.e. with particle diameters dp smaller than 15 nm, which were detected in situ by means of condensation nuclei counting techniques. Mixing ratios of nucleation-mode particles (nnm) of up to ∼ 50 000 mg−1 were measured at heights of 15–16 km (θ ≈ 370 K). NPF was most frequently observed at ∼ 12–16 km altitude (θ ≈ 355–380 K) and mainly below the tropopause. Resulting nnm remained elevated (∼ 300–2000 mg−1) up to altitudes of ∼ 17.5 km (θ ≈ 400 K), while under NPF conditions the fraction (f) of sub-micrometre-sized non-volatile residues (dp > 10 nm) remained below 50 %. At ∼ 12–14 km (θ ≈ 355–365 K) the minimum of f (
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-21-11689-2021