Differential expansion and rectangular HOMFLY for the figure eight knot

Differential expansion (DE) for a Wilson loop average in representation R is built to respect degenerations of representations for small groups. At the same time it behaves nicely under some changes of the loop, e.g. of some knots in the case of 3d Chern–Simons theory. Especially simple is the relat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear physics. B 2016-10, Vol.911 (C), p.582-605
1. Verfasser: Morozov, A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Differential expansion (DE) for a Wilson loop average in representation R is built to respect degenerations of representations for small groups. At the same time it behaves nicely under some changes of the loop, e.g. of some knots in the case of 3d Chern–Simons theory. Especially simple is the relation between the DE for the trefoil 31 and for the figure eight knot 41. Since arbitrary colored HOMFLY for the trefoil are known from the Rosso–Jones formula, it is therefore enough to find their DE in order to make a conjecture for the figure eight. We fulfill this program for all rectangular representation R=[rs], i.e. make a plausible conjecture for the rectangularly colored HOMFLY of the figure eight knot, which generalizes the old result for totally symmetric and antisymmetric representations.
ISSN:0550-3213
1873-1562
DOI:10.1016/j.nuclphysb.2016.08.027