Ultrasound-sensitizing nanoparticle complex for overcoming the blood-brain barrier: an effective drug delivery system

Crossing the blood-brain barrier (BBB) is crucial for drug delivery to the brain and for treatment of brain tumors, such as glioblastoma, the most common of all primary malignant brain tumors. Microbubble (MB) is oscillated and destroyed by controlling ultrasound (US) parameters. This oscillation an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of nanomedicine 2019-01, Vol.14, p.3743-3752
Hauptverfasser: Ha, Shin-Woo, Hwang, Kihwan, Jin, Jun, Cho, Ae-Sin, Kim, Tae Yoon, Hwang, Sung Il, Lee, Hak Jong, Kim, Chae-Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Crossing the blood-brain barrier (BBB) is crucial for drug delivery to the brain and for treatment of brain tumors, such as glioblastoma, the most common of all primary malignant brain tumors. Microbubble (MB) is oscillated and destroyed by controlling ultrasound (US) parameters. This oscillation and destruction of MB can open the BBB transiently, and a drug can be delivered to the brain. For testing the efficiency of delivery to the brain, we synthesized a US-sensitizing nanoparticle (NP) complex via chemically binding MBs and NPs for the BBB opening, including near-infrared dye-incorporated albumin nanoparticles (NIR-Alb NPs) for fluorescence detection. The human-derived, biocompatible NIR-Alb NPs did not show significant cytotoxicity to 500 μg/mL for 3 days in four human glioma cell lines. In an in vivo animal study, some US parameters were investigated to determine optimal conditions. The optimized US conditions were applied in a U87MG orthotopic mouse model. We found that the fluorescence intensity in the brain was 1.5 times higher than in the control group. Our US-sensitizing NP complex and US technique could become one of the critical technologies for drug delivery to the brain.
ISSN:1178-2013
1176-9114
1178-2013
DOI:10.2147/ijn.s193258