A novel decentralized federated learning approach to train on globally distributed, poor quality, and protected private medical data

Training on multiple diverse data sources is critical to ensure unbiased and generalizable AI. In healthcare, data privacy laws prohibit data from being moved outside the country of origin, preventing global medical datasets being centralized for AI training. Data-centric, cross-silo federated learn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-05, Vol.12 (1), p.8888-8888, Article 8888
Hauptverfasser: Nguyen, T. V., Dakka, M. A., Diakiw, S. M., VerMilyea, M. D., Perugini, M., Hall, J. M. M., Perugini, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Training on multiple diverse data sources is critical to ensure unbiased and generalizable AI. In healthcare, data privacy laws prohibit data from being moved outside the country of origin, preventing global medical datasets being centralized for AI training. Data-centric, cross-silo federated learning represents a pathway forward for training on distributed medical datasets. Existing approaches typically require updates to a training model to be transferred to a central server, potentially breaching data privacy laws unless the updates are sufficiently disguised or abstracted to prevent reconstruction of the dataset. Here we present a completely decentralized federated learning approach, using knowledge distillation, ensuring data privacy and protection. Each node operates independently without needing to access external data. AI accuracy using this approach is found to be comparable to centralized training, and when nodes comprise poor-quality data, which is common in healthcare, AI accuracy can exceed the performance of traditional centralized training.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-12833-x