DeePay: deep learning decodes EEG to predict consumer's willingness to pay for neuromarketing

There is an increasing demand within consumer-neuroscience (or neuromarketing) for objective neural measures to quantify consumers' subjective valuations and predict responses to marketing campaigns. However, the properties of EEG raise difficulties for these aims: small datasets, high dimensio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in human neuroscience 2023-06, Vol.17, p.1153413-1153413
Hauptverfasser: Hakim, Adam, Golan, Itamar, Yefet, Sharon, Levy, Dino J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is an increasing demand within consumer-neuroscience (or neuromarketing) for objective neural measures to quantify consumers' subjective valuations and predict responses to marketing campaigns. However, the properties of EEG raise difficulties for these aims: small datasets, high dimensionality, elaborate manual feature extraction, intrinsic noise, and between-subject variations. We aimed to overcome these limitations by combining unique techniques of Deep Learning Networks (DLNs), while providing interpretable results for neuroscientific and decision-making insight. In this study, we developed a DLN to predict subjects' willingness to pay (WTP) based on their EEG data. In each trial, 213 subjects observed a product's image, from 72 possible products, and then reported their WTP for the product. The DLN employed EEG recordings from product observation to predict the corresponding reported WTP values. Our results showed 0.276 test root-mean-square-error and 75.09% test accuracy in predicting high vs. low WTP, surpassing other models and a manual feature extraction approach. Network visualizations provided the predictive frequencies of neural activity, their scalp distributions, and critical timepoints, shedding light on the neural mechanisms involved with evaluation. In conclusion, we show that DLNs may be the superior method to perform EEG-based predictions, to the benefit of decision-making researchers and marketing practitioners alike.
ISSN:1662-5161
1662-5161
DOI:10.3389/fnhum.2023.1153413