Evolutionary adaptations of biofilms infecting cystic fibrosis lungs promote mechanical toughness by adjusting polysaccharide production

Biofilms are communities of microbes embedded in a matrix of extracellular polymeric substances, largely polysaccharides. Multiple types of extracellular polymeric substances can be produced by a single bacterial strain. The distinct polymer components of biofilms are known to provide chemical prote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ biofilms and microbiomes 2017, Vol.3 (1), p.1-9, Article 1
Hauptverfasser: Kovach, Kristin, Davis-Fields, Megan, Irie, Yasuhiko, Jain, Kanishk, Doorwar, Shashvat, Vuong, Katherine, Dhamani, Numa, Mohanty, Kishore, Touhami, Ahmed, Gordon, Vernita D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biofilms are communities of microbes embedded in a matrix of extracellular polymeric substances, largely polysaccharides. Multiple types of extracellular polymeric substances can be produced by a single bacterial strain. The distinct polymer components of biofilms are known to provide chemical protection, but little is known about how distinct extracellular polysaccharides may also protect biofilms against mechanical stresses such as shear or phagocytic engulfment. Decades-long infections of Pseudomonas. aeruginosa biofilms in the lungs of cystic fibrosis patients are natural models for studies of biofilm fitness under pressure from antibiotics and the immune system. In cystic fibrosis infections, production of the extracellular polysaccharide alginate has long been known to increase with time and to chemically protect biofilms. More recently, it is being recognized that chronic cystic fibrosis infections also evolve to increase production of another extracellular polysaccharide, Psl; much less is known about Psl’s protective benefits to biofilms. We use oscillatory bulk rheology, on biofilms grown from longitudinal clinical isolates and from genetically-manipulated lab strains, to show that increased Psl stiffens biofilms and increases biofilm toughness, which is the energy cost to cause the biofilm to yield mechanically. Further, atomic force microscopy measurements reveal greater intercellular cohesion for higher Psl expression. Of the three types of extracellular polysaccharides produced by P. aeruginosa , only Psl increases the stiffness. Stiffening by Psl requires CdrA, a protein that binds to mannose groups on Psl and is a likely cross-linker for the Psl components of the biofilm matrix. We compare the elastic moduli of biofilms to the estimated stresses exerted by neutrophils during phagocytosis, and infer that increased Psl could confer a mechanical protection against phagocytic clearance. Evolution: Toughening up biofilms in lungs Bacteria in lungs of people with cystic fibrosis can evolve through decades to build a tough biofilm that resists the body’s defences. Vernita Gordon and colleagues at the University of Texas, with co-workers in Europe, examined biofilms cultured from lung samples taken from patients at intervals over many years. The infecting bacterial populations had steadily evolved to increase production of specific carbohydrate components of the biofilms. The researchers found that increasing production of one carbohydrate componen
ISSN:2055-5008
2055-5008
DOI:10.1038/s41522-016-0007-9