CellTrackVis: interactive browser-based visualization for analyzing cell trajectories and lineages

Automatic cell tracking methods enable practitioners to analyze cell behaviors efficiently. Notwithstanding the continuous development of relevant software, user-friendly visualization tools have room for further improvements. Typical visualization mostly comes with main cell tracking tools as a sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2023-03, Vol.24 (1), p.124-124, Article 124
Hauptverfasser: Shim, Changbeom, Kim, Wooil, Nguyen, Tran Thien Dat, Kim, Du Yong, Choi, Yu Suk, Chung, Yon Dohn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automatic cell tracking methods enable practitioners to analyze cell behaviors efficiently. Notwithstanding the continuous development of relevant software, user-friendly visualization tools have room for further improvements. Typical visualization mostly comes with main cell tracking tools as a simple plug-in, or relies on specific software/platforms. Although some tools are standalone, limited visual interactivity is provided, or otherwise cell tracking outputs are partially visualized. This paper proposes a self-reliant visualization system, CellTrackVis, to support quick and easy analysis of cell behaviors. Interconnected views help users discover meaningful patterns of cell motions and divisions in common web browsers. Specifically, cell trajectory, lineage, and quantified information are respectively visualized in a coordinated interface. In particular, immediate interactions among modules enable the study of cell tracking outputs to be more effective, and also each component is highly customizable for various biological tasks. CellTrackVis is a standalone browser-based visualization tool. Source codes and data sets are freely available at http://github.com/scbeom/celltrackvis with the tutorial at http://scbeom.github.io/ctv_tutorial .
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-023-05218-y