Effect of Ni-Coated Carbon Nanotubes Additions on the Eutectic Sn-0.7Cu Lead-Free Composite Solder
Sn-0.7Cu-based (all in wt.% unless specified otherwise) composite solders functionalized with Ni-coated carbon nanotubes (CNTs) with various weight proportions ranging from 0.01 to 0.2 wt.% were successfully produced. The Ni-coated CNTs were synthesized with discontinuous nickel coating by an improv...
Gespeichert in:
Veröffentlicht in: | Metals (Basel ) 2022-07, Vol.12 (7), p.1196 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sn-0.7Cu-based (all in wt.% unless specified otherwise) composite solders functionalized with Ni-coated carbon nanotubes (CNTs) with various weight proportions ranging from 0.01 to 0.2 wt.% were successfully produced. The Ni-coated CNTs were synthesized with discontinuous nickel coating by an improved electroless nickel plating technique. The microstructural, melting and wetting properties of Sn-0.7Cu-based composite solders were evaluated as a function of different amounts of Ni-coated CNTs addition. Compared to Sn-0.7Cu, it was observed that the microstructure of the composite solder added to the Ni-coated CNTs was still composed of the intermetallic compound Cu6Sn5 in a β-Sn matrix, but the micromorphology changed greatly. When 0.05 wt.% Ni-coated CNTs were added, the rod-shaped Cu6Sn5 particles disappeared, and all appeared in a form of dot-shaped Cu6Sn5 particles. DSC results showed only a slight decrease in the melting behavior of the composite solder. Experimental results unveiled that the addition of Ni-coated CNTs to Sn-0.7Cu solder could improve the wettability. With the addition of 0.05 wt.% Ni-coated CNTs, the wetting angle decreased by 13.35%, and an optimum wetting angle of 25.44° was achieved. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met12071196 |