Guaranteed Lower Bounds for the Elastic Eigenvalues by Using the Nonconforming Crouzeix–Raviart Finite Element

This paper uses a locking-free nonconforming Crouzeix–Raviart finite element to solve the planar linear elastic eigenvalue problem with homogeneous pure displacement boundary condition. Making full use of the Poincaré inequality, we obtain the guaranteed lower bounds for eigenvalues. Besides, we als...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2020-08, Vol.8 (8), p.1252
Hauptverfasser: Zhang, Xuqing, Zhang, Yu, Yang, Yidu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper uses a locking-free nonconforming Crouzeix–Raviart finite element to solve the planar linear elastic eigenvalue problem with homogeneous pure displacement boundary condition. Making full use of the Poincaré inequality, we obtain the guaranteed lower bounds for eigenvalues. Besides, we also use the nonconforming Crouzeix–Raviart finite element to the planar linear elastic eigenvalue problem with the pure traction boundary condition, and obtain the guaranteed lower eigenvalue bounds. Finally, numerical experiments with MATLAB program are reported.
ISSN:2227-7390
2227-7390
DOI:10.3390/math8081252