Flow Control around NACA0015 Airfoil Using a Dielectric Barrier Discharge Plasma Actuator over a Wide Range of the Reynolds Number
In this study, an experimental investigation of separation control using a dielectric barrier discharge plasma actuator was performed on an NACA0015 airfoil over a wide range of Reynolds numbers, angles of attack, and nondimensional burst frequencies. The range of the Reynolds number was based on a...
Gespeichert in:
Veröffentlicht in: | Actuators 2023-01, Vol.12 (1), p.43 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, an experimental investigation of separation control using a dielectric barrier discharge plasma actuator was performed on an NACA0015 airfoil over a wide range of Reynolds numbers, angles of attack, and nondimensional burst frequencies. The range of the Reynolds number was based on a chord length ranging from 2.52 × 105 to 1.008 × 106. A plasma actuator was installed at the leading edge and driven by AC voltage. Burst mode (duty-cycle) actuation was applied, with the nondimensional burst frequency ranging between 0.1–30. The control authority was evaluated using the time-averaged distribution of the pressure coefficient Cp and the calculated value of the lift coefficient Cl. The baseline flow fields were classified into three types: (1) leading-edge separation; (2) trailing-edge separation; and (3) the hysteresis between (1) and (2). The results of the actuated cases show that the control trends clearly depend on the differences in the separation conditions. In leading-edge separation, actuation with a burst frequency of approximately F+= 0.5 creates a wide negative pressure region on the suction-side surface, leading to an increase in the lift coefficient. In trailing-edge separation, several actuations alter the position of turbulent separation. |
---|---|
ISSN: | 2076-0825 2076-0825 |
DOI: | 10.3390/act12010043 |