Carbon Felt Composite Electrode Plates Promote Methanogenesis through Microbial Electrolytic Cells

Bioelectrochemical systems are widely used in waste utilization processes. Among them, anaerobic digestion (AD) and microbial electrolytic cell coupling (MEC) are cost-effective and efficient waste-to-energy technologies. In this study, the proposal was made that a carbon felt composite electrode pl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2023-05, Vol.16 (11), p.4416
Hauptverfasser: Wu, Qi, Xiao, Han, Zhu, Hongguang, Pan, Fanghui, Lu, Fulu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bioelectrochemical systems are widely used in waste utilization processes. Among them, anaerobic digestion (AD) and microbial electrolytic cell coupling (MEC) are cost-effective and efficient waste-to-energy technologies. In this study, the proposal was made that a carbon felt composite electrode plate be applied to an AD-MEC reactor. The control experiment was conducted using an AD reactor (without the external power supply). The result shows that the carbon felt composite electrode plate increased the biogas production of the AD-MEC reactor by 15.4%, and the average methane content increased by 9.49% compared to the control AD reactor. The total methane production of the AD-MEC reactor and control reactor was 302.51 and 407.79 mL, respectively. The total methane production of the AD-MEC reactor was 34.8% higher than the control group. In addition, the authors found that Methanosarcina and Methanosaeta activities in the AD-MEC reactor were significantly increased. The carbon felt composite electrode plate applied in AD-MEC may have promoted the methanogenic microorganisms’ interspecific acetic acid transport process and increased biogas production and methane content.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16114416