Assessing the Sustainability of Alternative Structural Solutions of a Building: A Case Study

The implementation of sustainable solutions in the design of buildings is one of the main elements in achieving the transition to sustainability. The variety of structural elements and availability of sustainable materials, and the different preferences of clients, architects, and structural designe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Buildings (Basel) 2020-02, Vol.10 (2), p.36
Hauptverfasser: Vilutiene, Tatjana, Kumetaitis, Gvidas, Kiaulakis, Arvydas, Kalibatas, Darius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The implementation of sustainable solutions in the design of buildings is one of the main elements in achieving the transition to sustainability. The variety of structural elements and availability of sustainable materials, and the different preferences of clients, architects, and structural designers make the decision-making process difficult. This research aims to develop a decision model for applying to the early design stage. This work evaluates the sustainability of the load-bearing structures of a commercial building. Three types of load-bearing structures have been selected and compared concerning different physical parameters, cost of construction, cost of materials, technological dimensions (duration expressed in person-hours and machine-hours), and environmental impact. The methodology combines the building information modeling, sustainability criteria, and multi-criteria decision-aiding methods. The presented case study illustrates the proposed approach. The study revealed that multi-criteria decision aiding methods give the possibility to improve the selection process and to assess the sustainability of alternative structural solutions at an early stage of building design. The proposed decision model is versatile and therefore can be applied for different cases.
ISSN:2075-5309
2075-5309
DOI:10.3390/buildings10020036