Over-expression of CYP78A98, a cytochrome P450 gene from Jatropha curcas L., increases seed size of transgenic tobacco

Background: Jatropha curcas L. (further referred to as Jatropha), as a rapidly emerging biofuel crop, has attracted worldwide interest. However, Jatropha is still an undomesticated plant, the true potential of this shrub has not yet been fully realized. To explore the potential of Jatropha, breeding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic Journal of Biotechnology 2016-01, Vol.19 (1), p.15-22
Hauptverfasser: Tian, Yinshuai, Zhang, Min, Hu, Xiaole, Wang, Linghui, Dai, Jiao, Xu, Ying, Chen, Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Jatropha curcas L. (further referred to as Jatropha), as a rapidly emerging biofuel crop, has attracted worldwide interest. However, Jatropha is still an undomesticated plant, the true potential of this shrub has not yet been fully realized. To explore the potential of Jatropha, breeding and domestication are needed. Seed size is one of themost important traits of seed yield and has been selected since the beginning of agriculture. Increasing the seed size is amain goal of Jatropha domestication for increasing the seed yield, but the genetic regulation of seed size in Jatropha has not been fully understood. Results: We cloned CYP78A98 gene from Jatropha, a homologue of CYP78A5 in Arabidopsis. We found that CYP78A98 was highly expressed in male flower, female flower, stem apex, leaf and developing seed. However, its transcripts were hardly detected in root and stem. CYP78A98 protein localized in endoplasmic reticulum (ER) and the hydrophobic domain at the N-terminus was essential for the correct protein localization. Furthermore, INNER NO OUTER promoter (pINO) drove specific overexpression of CYP78A98 in transgenic tobacco seeds resulted in increased seed size andweight, aswell as improved seed protein and fatty acid content. Conclusions: The results indicated that CYP78A98 played a role in Jatropha seed size control. This may help us to better understand the genetic regulation of Jatropha seed development, and accelerate the breeding progress of Jatropha.
ISSN:0717-3458
0717-3458
DOI:10.1016/j.ejbt.2015.11.001