Optimal Dispatch of Regional Integrated Energy System Group including Power to Gas Based on Energy Hub
Different renewable energy resources and energy demands between parks lead to waste of resources and frequent interactions between the regional distribution grid and the larger grid. Hence, an optimal dispatching scheme of the regional integrated energy system group (RIESG), which combines the power...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2022-12, Vol.15 (24), p.9401 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Different renewable energy resources and energy demands between parks lead to waste of resources and frequent interactions between the regional distribution grid and the larger grid. Hence, an optimal dispatching scheme of the regional integrated energy system group (RIESG), which combines the power-to-gas (P2G) and inter-park electric energy mutual aid, is proposed in this paper to solve this problem. Firstly, for the park integrated energy system (PIES) with various structures, the coupling matrix is used to describe the input-output relationship and coupling form of multiple energy sources in the energy-hub (EH), which linearizes the complex multi-energy coupled system and is more conducive to the solution of the model. Secondly, the electrical coupling relationship of the system is improved by adding P2G to enhance the system’s ability to consume renewable energy. Moreover, the installation cost of P2G is introduced to comprehensively consider the impact of the economic efficiency on the system. Finally, to minimize the network loss of energy flow, the optimal dispatching model of RIESG with P2G conversion is constructed through the electric energy mutual aid among the parks. The simulation shows that compared with the independent operation of each park’s integrated energy system (IES), the proposed optimal dispatching strategy of RIESG achieves the mutual benefit of electric energy among park groups, reduces the dependency on the large power grid, and effectively improves the economy of system groups. In this condition, the renewable energy consumption rate reaches 99.59%, the utilization rate of P2G increases to 94.28%, and the total system cost is reduced by 34.83%. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15249401 |