Matching Boundary Conditions for the Euler–Bernoulli Beam

Artificial boundary conditions play a crucial role in the dynamic simulation of infinite Euler–Bernoulli beams. In this paper, a class of artificial boundary conditions, matching boundary conditions (MBCs), is presented to provide effective absorption of incident waves in numerical simulations of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock and vibration 2021, Vol.2021 (1)
Hauptverfasser: Feng, Yaoqi, Wang, Xianming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Artificial boundary conditions play a crucial role in the dynamic simulation of infinite Euler–Bernoulli beams. In this paper, a class of artificial boundary conditions, matching boundary conditions (MBCs), is presented to provide effective absorption of incident waves in numerical simulations of the Euler–Bernoulli beam. First, matching boundary conditions are proposed based on the space central difference scheme of the Euler–Bernoulli beam, and then, the specific coefficients of MBCs are determined by matching the dispersion relation. Moreover, reflection coefficient study and numerical tests are carried out to analyze the effectiveness of the proposed MBCs, indicating a remarkable agreement. Taken together, the proposed boundary conditions herein can absorb dispersive waves efficiently and are more compact than previous artificial boundary conditions, particularly suitable for real-time simulation.
ISSN:1070-9622
1875-9203
DOI:10.1155/2021/6685852