Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach

Millions of people in Asia and sub-Saharan Africa still lack access to power, which emphasizes the need for sustainable and clean energy solutions. This study attempts to address this issue by integrating a life cycle assessment (LCA) and a multicriteria decision-making (MCDM) analysis to determine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2023-09, Vol.16 (18), p.6722
Hauptverfasser: Akintayo, Busola D., Ige, Oluwafemi E., Babatunde, Olubayo M., Olanrewaju, Oludolapo A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Millions of people in Asia and sub-Saharan Africa still lack access to power, which emphasizes the need for sustainable and clean energy solutions. This study attempts to address this issue by integrating a life cycle assessment (LCA) and a multicriteria decision-making (MCDM) analysis to determine the preferred energy technology for electrification. This research focuses on the environmental implications and long-term viability of various energy system options. The LCA evaluates midpoint characterization containing 18 environmental impact categories; the COPRAS and ARAS methods of MCDM analysis are then used to rank the energy alternatives based on their environmental performance. This study’s key finding is that the gas-powered power plant is the most preferred energy system alternative, while the geothermal power plant is the least preferred. This midpoint characterization study provides in-depth insights into how various stages contribute to major environmental impact categories like global warming, ozone depletion, and ecotoxicity. By considering environmental impacts and sustainability requirements, informed decisions may be made to encourage clean and cost-effective power generation, thereby contributing to climate change mitigation and supporting economic growth and human development. Future research may include analysis from cradle-to-grave compared to cradle-to-gate.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16186722