Exceptional uranium(VI)-nitride triple bond covalency from 15N nuclear magnetic resonance spectroscopy and quantum chemical analysis
Determining the nature and extent of covalency of early actinide chemical bonding is a fundamentally important challenge. Recently, X-ray absorption, electron paramagnetic, and nuclear magnetic resonance spectroscopic studies have probed actinide-ligand covalency, largely confirming the paradigm of...
Gespeichert in:
Veröffentlicht in: | Nature communications 2021-09, Vol.12 (1), p.5649-5649, Article 5649 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Determining the nature and extent of covalency of early actinide chemical bonding is a fundamentally important challenge. Recently, X-ray absorption, electron paramagnetic, and nuclear magnetic resonance spectroscopic studies have probed actinide-ligand covalency, largely confirming the paradigm of early actinide bonding varying from ionic to polarised-covalent, with this range sitting on the continuum between ionic lanthanide and more covalent d transition metal analogues. Here, we report measurement of the covalency of a terminal uranium(VI)-nitride by
15
N nuclear magnetic resonance spectroscopy, and find an exceptional nitride chemical shift and chemical shift anisotropy. This redefines the
15
N nuclear magnetic resonance spectroscopy parameter space, and experimentally confirms a prior computational prediction that the uranium(VI)-nitride triple bond is not only highly covalent, but, more so than d transition metal analogues. These results enable construction of general, predictive metal-ligand
15
N chemical shift-bond order correlations, and reframe our understanding of actinide chemical bonding to guide future studies.
Determining the covalency of actinide chemical bonding is a fundamentally important challenge. Here, the authors report a
15
N nuclear magnetic resonance spectroscopy study of a terminal uranium-nitride, revealing exceptional NMR properties and covalency that redefine
15
N NMR parameter space and actinide chemical bonding. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-021-25863-2 |