Exceptional uranium(VI)-nitride triple bond covalency from 15N nuclear magnetic resonance spectroscopy and quantum chemical analysis

Determining the nature and extent of covalency of early actinide chemical bonding is a fundamentally important challenge. Recently, X-ray absorption, electron paramagnetic, and nuclear magnetic resonance spectroscopic studies have probed actinide-ligand covalency, largely confirming the paradigm of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-09, Vol.12 (1), p.5649-5649, Article 5649
Hauptverfasser: Du, Jingzhen, Seed, John A., Berryman, Victoria E. J., Kaltsoyannis, Nikolas, Adams, Ralph W., Lee, Daniel, Liddle, Stephen T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Determining the nature and extent of covalency of early actinide chemical bonding is a fundamentally important challenge. Recently, X-ray absorption, electron paramagnetic, and nuclear magnetic resonance spectroscopic studies have probed actinide-ligand covalency, largely confirming the paradigm of early actinide bonding varying from ionic to polarised-covalent, with this range sitting on the continuum between ionic lanthanide and more covalent d transition metal analogues. Here, we report measurement of the covalency of a terminal uranium(VI)-nitride by 15 N nuclear magnetic resonance spectroscopy, and find an exceptional nitride chemical shift and chemical shift anisotropy. This redefines the 15 N nuclear magnetic resonance spectroscopy parameter space, and experimentally confirms a prior computational prediction that the uranium(VI)-nitride triple bond is not only highly covalent, but, more so than d transition metal analogues. These results enable construction of general, predictive metal-ligand 15 N chemical shift-bond order correlations, and reframe our understanding of actinide chemical bonding to guide future studies. Determining the covalency of actinide chemical bonding is a fundamentally important challenge. Here, the authors report a 15 N nuclear magnetic resonance spectroscopy study of a terminal uranium-nitride, revealing exceptional NMR properties and covalency that redefine 15 N NMR parameter space and actinide chemical bonding.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-25863-2