N,N-Dimethylacetamide Significantly Attenuates LPS- and TNFα-Induced Proinflammatory Responses Via Inhibition of the Nuclear Factor Kappa B Pathway

Previously, we have shown that N,N-dimethylacetamide (DMA) prevents inflammation-induced preterm birth in a murine model, inhibits LPS-induced increases in placental pro-inflammatory cytokines and up-regulates the anti-inflammatory cytokine Interleukin-10 (IL-10). However, DMA's mechanism of ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular medicine (Cambridge, Mass.) Mass.), 2016-01, Vol.22 (1), p.747-758
Hauptverfasser: Pekson, Ryan, Poltoratsky, Vladimir, Gorasiya, Samir, Sundaram, Sruthi, Ashby, Charles R, Vancurova, Ivana, Reznik, Sandra E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previously, we have shown that N,N-dimethylacetamide (DMA) prevents inflammation-induced preterm birth in a murine model, inhibits LPS-induced increases in placental pro-inflammatory cytokines and up-regulates the anti-inflammatory cytokine Interleukin-10 (IL-10). However, DMA's mechanism of action remains to be elucidated. In the current study we investigate how DMA produces its anti-inflammatory effect. Using and models, we show that DMA suppresses secretion of pro-inflammatory cytokines in lipopolysaccharide (LPS)-induced RAW 264.7 cells, TNFα-challenged JEG-3 cells and LPS-stimulated human placental explants. DMA significantly attenuated the secretion of TNFα, IL-6, IL-10, and granulocyte macrophage colony stimulating factor (GM-CSF) from LPS-stimulated RAW 264.7 cells, IL-6 secretion from TNFα-stimulated JEG-3 cells and TNFα, IL-6, IL-10, GM-CSF and Interleukin-8 (IL-8) from LPS-stimulated human placental explants. We further investigated if DMA's effect on cytokine expression involves the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. DMA (10 mM) significantly inhibited nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) degradation in LPS-stimulated RAW 264.7 cells, but there was no significant change in the expression of phosphorylated or native forms of downstream proteins in the MAPK pathway. In addition, DMA significantly attenuated luciferase activity in cells co-transfected with NF-κB-Luc reporter plasmid, but not with AP-1-Luc or CEBP-Luc reporters. Overall, our findings suggest that the anti-inflammatory activity of DMA is mediated by inhibition of the NF-κB pathway via decreased IκBα degradation.
ISSN:1076-1551
1528-3658
DOI:10.2119/molmed.2016.00017