Precision digital mapping of endogenous and induced genomic DNA breaks by INDUCE-seq

Understanding how breaks form and are repaired in the genome depends on the accurate measurement of the frequency and position of DNA double strand breaks (DSBs). This is crucial for identification of a chemical’s DNA damage potential and for safe development of therapies, including genome editing t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-07, Vol.13 (1), p.3989-3989, Article 3989
Hauptverfasser: Dobbs, Felix M., van Eijk, Patrick, Fellows, Mick D., Loiacono, Luisa, Nitsch, Roberto, Reed, Simon H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding how breaks form and are repaired in the genome depends on the accurate measurement of the frequency and position of DNA double strand breaks (DSBs). This is crucial for identification of a chemical’s DNA damage potential and for safe development of therapies, including genome editing technologies. Current DSB sequencing methods suffer from high background levels, the inability to accurately measure low frequency endogenous breaks and high sequencing costs. Here we describe INDUCE-seq, which overcomes these problems, detecting simultaneously the presence of low-level endogenous DSBs caused by physiological processes, and higher-level recurrent breaks induced by restriction enzymes or CRISPR-Cas nucleases. INDUCE-seq exploits an innovative NGS flow cell enrichment method, permitting the digital detection of breaks. It can therefore be used to determine the mechanism of DSB repair and to facilitate safe development of therapeutic genome editing. We further discuss how the method can be adapted to detect other genomic features. Understanding how DNA double strand breaks (DSBs) form and are repaired in the genome depends on their accurate measurement. Here the authors describe INDUCE-seq; a DSB-detection method that simultaneously measures physiological and induced breaks throughout the genome.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-31702-9