Threshold dynamics of a nonlocal diffusion West Nile virus model with spatial heterogeneity
In this study, we investigated the threshold dynamics of a spatially heterogeneous nonlocal diffusion West Nile virus model. By employing semigroup theory and continuous Fréchet-differentiable, we established the well-posedness of the solution. The expression for the basic reproduction number derive...
Gespeichert in:
Veröffentlicht in: | AIMS mathematics 2023-01, Vol.8 (6), p.14253-14269 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we investigated the threshold dynamics of a spatially heterogeneous nonlocal diffusion West Nile virus model. By employing semigroup theory and continuous Fréchet-differentiable, we established the well-posedness of the solution. The expression for the basic reproduction number derived using the next-generation matrix method. The authors demonstrated the threshold dynamics of the system by constructing a Lyapunov function and applying the comparison principle. Finally, numerical simulations were used to validate the theorem results. It can be suggested that to control disease development rapidly, measures should be taken to reduce the spread of mosquitoes and birds. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2023729 |