A detailed exploration of microstructure evolution in a novel Ti–Mo martensitic steel through in-situ observation: The effect of heating rate

Rapid heating is a promising technique for achieving excellent mechanical properties. This study innovatively applies rapid heating to a novel Ti–Mo martensite steel through in-situ observation experiments. By comparing the microstructure evolutions at heating rates of 1 and 30 °C/s, the relationshi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research and technology 2024-07, Vol.31, p.264-275
Hauptverfasser: Yuan, Qing, Mo, Jiaxuan, Ren, Jie, Liang, Wen, Xu, Guang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rapid heating is a promising technique for achieving excellent mechanical properties. This study innovatively applies rapid heating to a novel Ti–Mo martensite steel through in-situ observation experiments. By comparing the microstructure evolutions at heating rates of 1 and 30 °C/s, the relationship between microstructure and property evolution was elucidated. The results indicate that the refined austenite grains resulting from rapid heating stem from enhanced grain nucleation, accumulated dislocations, and the increased formation of new carbides under the large superheat. Furthermore, carbide maturation predominates during the slow heating process, while rapid heating accelerates new carbide precipitation with limited carbide maturation. Moreover, during rapid heating, both coherent and non-coherent relationships were observed between the (Ti, Mo, Fe)C particles and the martensite matrix, demonstrating a remarkable pinning effect on grain boundary migration. Nevertheless, during slow heating, large-sized (Ti, Mo)C carbides were formed, presenting a non-coherent relationship with the martensite matrix. Additionally, the primary differences in strength caused by rapid heating compared to slow heating include grain refinement, dislocation, and precipitation strengthenings, with dislocation strengthening playing the dominant role.
ISSN:2238-7854
DOI:10.1016/j.jmrt.2024.06.080