Adenosine inhibits TNFα-induced MMP-3 production in MH7A rheumatoid arthritis synoviocytes via A2A receptor signaling

Adenosine causes the anti-inflammatory effect of MTX; however, the contributions of synoviocyte adenosine receptors (AdoRs) are unknown, and matrix metalloproteinase 3 (MMP-3) is released by fibroblast-like synoviocytes in response to inflammatory signaling. To understand the mechanism of the clinic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-04, Vol.12 (1), p.6033-6033, Article 6033
Hauptverfasser: Konishi, Hiroe, Kanou, Shun-En, Yukimatsu, Rika, Inui, Mizuki, Sato, Motoya, Yamamoto, Naruto, Nakano, Masayoshi, Koshiba, Masahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adenosine causes the anti-inflammatory effect of MTX; however, the contributions of synoviocyte adenosine receptors (AdoRs) are unknown, and matrix metalloproteinase 3 (MMP-3) is released by fibroblast-like synoviocytes in response to inflammatory signaling. To understand the mechanism of the clinical observation that the matrix proteinase-3 concentration of patients with rheumatoid arthritis treated successfully with methotrexate does not usually normalize, we investigated the effects of A 2A AdoR activation and inhibition on tumor necrosis factor-alpha (TNFα)-induced MMP-3 release by MH7A human rheumatoid synovial cells. MH7A cells constitutively expressed membrane-associated A 2A AdoRs, and HENECA enhanced intracellular cAMP. Stimulation with TNFα markedly enhanced release of MMP-3 from MH7A cells, whereas HENECA partially and dose-dependently inhibited TNFα-evoked MMP-3 release. Similarly, dbcAMP partially inhibited TNFα-induced MMP-3 release. Pretreatment with ZM241385 reversed the inhibitory effects of HENECA. Further, TNFα induced p38 MAPK and ATF-2 phosphorylation, whereas HENECA suppressed p38 MAPK and ATF-2 phosphorylation. We concluded that adenosine signaling via A 2A AdoRs, adenylyl cyclase, and cAMP reduces TNFα-induced MMP-3 production by interfering with p38 MAPK/ATF-2 activity. Activation of A 2A AdoR signaling alone using HENECA did not reduce TNFα-induced MMP-3 production to the basal levels, which may explain why MTX usually decreases but does not eliminate serum MMP-3.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-10012-6