Comparison of Pentaerythrotol and Its Derivatives as Intumescent Flame Retardants for Polypropylene

Hydroquinol bis[di(2,6,7-trioxa-phosphabicyclo[2.2.2]-octane-1-oxo-4-hydroxylmethyl)]phosphate (PBPP), which contains caged phosphates and benzene groups, was synthesized. The caged phosphate structure of PBPP was characterized by Fourier transform infrared spectroscopy (FT-IR), hydrogen nuclear mag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in materials science and engineering 2018-01, Vol.2018 (2018), p.1-12
Hauptverfasser: Liu, Jie, Deng, Haiming, Xu, Jiayou, Huang, Siwen, Xiao, Yuanfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydroquinol bis[di(2,6,7-trioxa-phosphabicyclo[2.2.2]-octane-1-oxo-4-hydroxylmethyl)]phosphate (PBPP), which contains caged phosphates and benzene groups, was synthesized. The caged phosphate structure of PBPP was characterized by Fourier transform infrared spectroscopy (FT-IR), hydrogen nuclear magnetic resonance (1H-NMR), and phosphorus nuclear magnetic resonance (31P-NMR). The experimental results showed that PBPP had better performance than 1-oxo-4-hydroxymethy1-2,6,7-trioxa-1-phosphabicyclo[2.2.2]-octane (PEPA) and pentaerythritol (PER) in water resistance, compatibility with polypropylene (PP), thermal stability, and flame retardancy of intumescent flame retardant PP (IFR-PP) systems. It was attributed to the symmetrical structure and stereohindrance effect of PBPP. The IFR-PP systems reached UL94 V-0 flammability rating when the minimal addition of IFR with PBPP, PEPA, or PER was 25%, 23%, and 28%, respectively. The flame retardant mechanisms of IFR containing PBPP, PEPA, and PER were investigated by FT-IR and scanning electron microscopy (SEM). PBPP formed a perfect charring layer, with the high carbon content of PBPP helping it form the charring layer more quickly.
ISSN:1687-8434
1687-8442
DOI:10.1155/2018/6153252