Tunable quantum interference effect on magnetoconductivity in few-layer black phosphorus

In this Rapid Communication, we develop a systematic weak localization and antilocalization theory fully considering the anisotropy and Berry phase of the system, and apply it to various phases of few-layer black phosphorus (BP), which has a highly anisotropic electronic structure with an electronic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review research 2020-05, Vol.2 (2), p.022045, Article 022045
Hauptverfasser: Kim, Sunghoon, Min, Hongki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this Rapid Communication, we develop a systematic weak localization and antilocalization theory fully considering the anisotropy and Berry phase of the system, and apply it to various phases of few-layer black phosphorus (BP), which has a highly anisotropic electronic structure with an electronic gap size tunable even to a negative value. The derivation of a Cooperon ansatz for the Bethe-Salpeter equation in a general anisotropic system is presented, revealing the existence of various quantum interference effects in different phases of few-layer BP, including a crossover from weak localization to antilocalization. We also predict that the magnetoconductivity at the semi-Dirac transition point will exhibit a nontrivial power-law dependence on the magnetic field, while following the conventional logarithmic field dependence of two-dimensional systems in the insulator and Dirac semimetal phases. Notably, the ratio between the magnetoconductivity and Boltzmann conductivity turns out to be independent of the direction, even in strongly anisotropic systems. Finally, we discuss the tunability of the quantum corrections of few-layer BP in terms of the symmetry class of the system.
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.2.022045