Graph-Based Bootstrapping for Coreference Resolution
Coreference resolution is a challenging natural language processing task, and it is difficult to identify the correct mentions of an entity that can be any noun or noun phrase. In this article, a semisupervised, two-stage pattern-based bootstrapping approach is proposed for the coreference resolutio...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent systems 2014-09, Vol.23 (3), p.293-310 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coreference resolution is a challenging natural language processing task, and it is difficult to identify the correct mentions of an entity that can be any noun or noun phrase. In this article, a semisupervised, two-stage pattern-based bootstrapping approach is proposed for the coreference resolution task. During Stage 1, the possible mentions are identified using word-based features, and during Stage 2, the correct mentions are identified by filtering the non-coreferents of an entity using statistical measures and graph-based features. Whereas the existing approaches use morphosyntactic and number/gender agreement features, the proposed approach uses semantic graph-based context-level semantics and nested noun phrases in the correct mentions identification. Moreover, mentions without the number/gender information are identified, using the context-based features of the semantic graph. The evaluation performed for the coreference resolution shows significant improvements, when compared with the word association-based bootstrapping systems. |
---|---|
ISSN: | 0334-1860 2191-026X |
DOI: | 10.1515/jisys-2013-0056 |