The Adaptive Composite Block-Structured Grid Calculation of the Gas-Dynamic Characteristics of an Aircraft Moving in a Gas Environment

This paper considers the problem associated with the numerical simulation of the interaction between the cocurrent stream occurring near a monoblock moving in the gas medium and solid fuel combustion products flowing from a solid fuel rocket engine (SFRE). The peculiarity of the approach used is the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-06, Vol.10 (12), p.2130
Hauptverfasser: Kuzenov, Victor V., Ryzhkov, Sergei V., Varaksin, Aleksey Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers the problem associated with the numerical simulation of the interaction between the cocurrent stream occurring near a monoblock moving in the gas medium and solid fuel combustion products flowing from a solid fuel rocket engine (SFRE). The peculiarity of the approach used is the description of gas-dynamic processes inside the combustion chamber, in the nozzle block, and the down jet based on a single calculation methodology. In the formulated numerical methodology, the calculation of gas-dynamic parameters is based on the solution of unsteady Navier–Stokes equations and the application of a hybrid computational grid. A hybrid block-structured computational grid makes it possible to calculate gas flow near bodies of complex geometric shapes. The simulation of the main phase of interaction, corresponding to the stationary mode of rocket flight in the Earth’s atmosphere, has been carried out. A conjugated simulation of the internal ballistics of SFRE and interaction of combustion products jets is conducted.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10122130