Effects of temperature and UVR on organic matter fluxes and the metabolic activity of Acropora muricata

Coral bleaching events are predicted to occur more frequently in the coming decades with global warming. The susceptibility of corals to bleaching during thermal stress episodes depends on many factors, including the magnitude of thermal stress and irradiance. The interactions among these two factor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology open 2017-08, Vol.6 (8), p.1190-1199
Hauptverfasser: Courtial, Lucile, Ferrier-Pagès, Christine, Jacquet, Stéphan, Rodolfo-Metalpa, Riccardo, Reynaud, Stéphanie, Rottier, Cécile, Houlbrèque, Fanny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coral bleaching events are predicted to occur more frequently in the coming decades with global warming. The susceptibility of corals to bleaching during thermal stress episodes depends on many factors, including the magnitude of thermal stress and irradiance. The interactions among these two factors, and in particular with ultra-violet radiation (UVR), the most harmful component of light, are more complex than assumed, and are not yet well understood. This paper explores the individual and combined effects of temperature and UVR on the metabolism of , one of the most abundant coral species worldwide. Particulate and dissolved organic matter (POM/DOM) fluxes and organic matter (OM) degradation by the mucus-associated bacteria were also monitored in all conditions. The results show that UVR exposure exacerbated the temperature-induced bleaching, but did not affect OM fluxes, which were only altered by seawater warming. Temperature increase induced a shift from POM release and DOM uptake in healthy corals to POM uptake and DOM release in stressed ones. POM uptake was linked to a significant grazing of pico- and nanoplankton particles during the incubation, to fulfil the energetic requirements of in the absence of autotrophy. Finally, OM degradation by mucus-associated bacterial activity was unaffected by UVR exposure, but significantly increased under high temperature. Altogether, our results demonstrate that seawater warming and UVR not only affect coral physiology, but also the way corals interact with the surrounding seawater, with potential consequences for coral reef biogeochemical cycles and food webs.
ISSN:2046-6390
2046-6390
DOI:10.1242/bio.026757