Microscopic pore of sandstone in Longde Coal Mine based on FHH fractal theory
The coal resources in western China are mainly Jurassic coal fields, and the Jurassic coal measure strata are generally affected by roof composite water, so the water-rich evaluation of roof sandstone aquifer is the premise of safe mining. Taking Longde Coal Mine as the research object, the pore str...
Gespeichert in:
Veröffentlicht in: | Mei kuang an quan 2024-10, Vol.55 (10), p.179-189 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The coal resources in western China are mainly Jurassic coal fields, and the Jurassic coal measure strata are generally affected by roof composite water, so the water-rich evaluation of roof sandstone aquifer is the premise of safe mining. Taking Longde Coal Mine as the research object, the pore structure characteristics of sandstone were analyzed through nitrogen adsorption test and whole rock analysis. Based on FHH fractal model, the correlation between fractal dimension and rock composition, pore structure and burial depth was analyzed. The results show that the sandstone in Longde Coal Mine has strong heterogeneity, and the fractal dimension D2 is larger than D1, indicating that the pore structure in the sandstone is more complex than that on the surface. The composition of rock is an important factor affecting the complexity of pores, and clay minerals and quartz are the main factors affecting the fractal dimension. The adsorption hysteresis of sandstone in the region is approximately H3 and H4, mainly n |
---|---|
ISSN: | 1003-496X |
DOI: | 10.13347/j.cnki.mkaq.20231401 |