Small leucine-rich proteoglycans inhibit CNS regeneration by modifying the structural and mechanical properties of the lesion environment

Extracellular matrix (ECM) deposition after central nervous system (CNS) injury leads to inhibitory scarring in humans and other mammals, whereas it facilitates axon regeneration in the zebrafish. However, the molecular basis of these different fates is not understood. Here, we identify small leucin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-10, Vol.14 (1), p.6814-6814, Article 6814
Hauptverfasser: Kolb, Julia, Tsata, Vasiliki, John, Nora, Kim, Kyoohyun, Möckel, Conrad, Rosso, Gonzalo, Kurbel, Veronika, Parmar, Asha, Sharma, Gargi, Karandasheva, Kristina, Abuhattum, Shada, Lyraki, Olga, Beck, Timon, Müller, Paul, Schlüßler, Raimund, Frischknecht, Renato, Wehner, Anja, Krombholz, Nicole, Steigenberger, Barbara, Beis, Dimitris, Takeoka, Aya, Blümcke, Ingmar, Möllmert, Stephanie, Singh, Kanwarpal, Guck, Jochen, Kobow, Katja, Wehner, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extracellular matrix (ECM) deposition after central nervous system (CNS) injury leads to inhibitory scarring in humans and other mammals, whereas it facilitates axon regeneration in the zebrafish. However, the molecular basis of these different fates is not understood. Here, we identify small leucine-rich proteoglycans (SLRPs) as a contributing factor to regeneration failure in mammals. We demonstrate that the SLRPs chondroadherin, fibromodulin, lumican, and prolargin are enriched in rodent and human but not zebrafish CNS lesions. Targeting SLRPs to the zebrafish injury ECM inhibits axon regeneration and functional recovery. Mechanistically, we find that SLRPs confer mechano-structural properties to the lesion environment that are adverse to axon growth. Our study reveals SLRPs as inhibitory ECM factors that impair axon regeneration by modifying tissue mechanics and structure, and identifies their enrichment as a feature of human brain and spinal cord lesions. These findings imply that SLRPs may be targets for therapeutic strategies to promote CNS regeneration. The mechanical properties of central nervous system (CNS) scar tissue are considered to contribute to axon regeneration failure. Here, the authors identify members of the small leucine-rich proteoglycan family as modulators of the inhibitory viscoelastic response of CNS lesions.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-42339-7