Evaluation of the correlation between type 1 diabetes and cognitive function in children and adolescents, and comparison of this correlation with structural changes in the central nervous system: a study protocol

IntroductionDiabetes mellitus type 1 (T1DM) affects nearly 15 million children worldwide and failure to achieve and maintain good glycaemic control in this group can lead to diabetes-related complications. Children with T1DM can experience impairment in cognitive function such as memory, attention a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMJ open 2016-04, Vol.6 (4), p.e007917-e007917
Hauptverfasser: Pourabbasi, Ata, Tehrani-Doost, Mehdi, Ebrahimi Qavam, Soqra, Larijani, Bagher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:IntroductionDiabetes mellitus type 1 (T1DM) affects nearly 15 million children worldwide and failure to achieve and maintain good glycaemic control in this group can lead to diabetes-related complications. Children with T1DM can experience impairment in cognitive function such as memory, attention and executive function. This study is designed to evaluate the correlation between diabetes and cognitive dysfunction as well as to clarify whether this correlation can be linked to neurological structural changes in 6–11-year-old children with diabetes.Methods and analysis310 eligible children with diabetes will be divided into two groups based on glycaemic control according to their HbA1c index. The control group will include 150 children aged 6–11 without diabetes. The following parameters will be measured and investigated: duration of the disease since diagnosis, required daily insulin dose, frequency of insulin administration, hospital admissions due to diabetes, hypoglycaemic episodes during the last year, and episodes of diabetic ketoacidosis. The following components of cognitive function will be evaluated: memory, attention, executive function, decision-making and academic performance. Cognitive function and subsequent subtests will be assessed using Cambridge Neuropsychological Test Automated Battery (CANTAB) tools. Brain structural indices such as intracranial vault (ICV), as well as cerebrospinal fluid (CSF), ventricle, hippocampus, total intracranial, total brain, grey matter and white matter volume will be measured using MRI. ANOVA, correlational tests (Spearman) and regression models will be used to evaluate the hypothesis.Ethics and disseminationThis study is approved by the ethics committee of the Endocrinology and Metabolism Research Institute (EMRI) of Tehran University of Medical Sciences (TUMS) under reference number 00300. Our findings are to be published in a peer-reviewed journal and disseminated both electronically and in print.
ISSN:2044-6055
2044-6055
DOI:10.1136/bmjopen-2015-007917