Hydrophilicity and Pore Structure Enhancement in Polyurethane/Silk Protein-Bismuth Halide Oxide Composite Films for Photocatalytic Degradation of Dye

Polyurethane/silk protein-bismuth halide oxide composite films were fabricated using a blending-wet phase transformationin situsynthesis method. The crystal structure, micromorphology, and optical properties were conducted using XRD, SEM, and UV-Vis DRS characterize techniques. The results indicated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2024-06, Vol.25 (12), p.6653
Hauptverfasser: Meng, Lingxi, Jian, Jian, Yang, Dexing, Dan, Yixiao, Sun, Weijie, Ai, Qiuhong, Zhang, Yusheng, Zhou, Hu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polyurethane/silk protein-bismuth halide oxide composite films were fabricated using a blending-wet phase transformationin situsynthesis method. The crystal structure, micromorphology, and optical properties were conducted using XRD, SEM, and UV-Vis DRS characterize techniques. The results indicated that loaded silk protein enhanced the hydrophilicity and pore structure of the polyurethane composite films. The active species BiOX were observed to grow as nanosheets with high dispersion on the internal skeleton and silk protein surface of the polyurethane-silk protein film. The photocatalytic efficiency of BiOX/PU-SF composite films was assessed through the degradation of Rhodamine B under visible light irradiation. Among the tested films, the BiOBr/PU-SF composite exhibited the highest removal rate of RhB at 98.9%, surpassing the removal rates of 93.7% for the BiOCl/PU-SF composite and 85.6% for the BiOI/PU-SF composite. Furthermore, an active species capture test indicated that superoxide radical (•O ) and hole (h ) species played a predominant role in the photodegradation process.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms25126653