In situ visualization and quantification of three-dimensional root system architecture and growth using X-ray computed tomography

Root system architecture and associated root-soil interactions exhibit large changes over time. Nondestructive methods for the quantification of root systems and their temporal development are needed to improve our understanding of root activity in natural soils. X-ray computed tomography (X-ray CT)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vadose zone journal 2014-08, Vol.13 (8), p.1-10
Hauptverfasser: Koebernick, Nicolai, Weller, Ulrich, Huber, Katrin, Schlüter, Steffen, Vogel, Hans-Jörg, Jahn, Reinhold, Vereecken, Harry, Vetterlein, Doris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Root system architecture and associated root-soil interactions exhibit large changes over time. Nondestructive methods for the quantification of root systems and their temporal development are needed to improve our understanding of root activity in natural soils. X-ray computed tomography (X-ray CT) was used to visualize and quantify growth of a single Vicia faba L. root system during a drying period. The plant was grown under controlled conditions in a sandy soil mixture and imaged every second day. Minkowski functionals and Euclidean distance transform were used to quantify root architectural traits. We were able to image the root system with water content decreasing from 29.6 to 6.75%. Root length was slightly underestimated compared with destructive measurements. Based on repeated measurements over time it was possible to quantify the dynamics of root growth and the demography of roots along soil depth. Measurement of Euclidean distances from any point within the soil to the nearest root surface yielded a frequency distribution of travel distances for water and nutrients towards roots. Our results demonstrate that a meaningful quantitative characterization of root systems and their temporal dynamics is possible.
ISSN:1539-1663
1539-1663
DOI:10.2136/vzj2014.03.0024