Identifying the space source term problem for a generalization of the fractional diffusion equation with hyper-Bessel operator

In this paper, we consider an inverse problem of identifying the source term for a generalization of the time-fractional diffusion equation, where regularized hyper-Bessel operator is used instead of the time derivative. First, we investigate the existence of our source term; the conditional stabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2020-06, Vol.2020 (1), p.1-23, Article 261
Hauptverfasser: Luc, Nguyen Hoang, Huynh, Le Nhat, Baleanu, Dumitru, Can, Nguyen Huu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider an inverse problem of identifying the source term for a generalization of the time-fractional diffusion equation, where regularized hyper-Bessel operator is used instead of the time derivative. First, we investigate the existence of our source term; the conditional stability for the inverse source problem is also investigated. Then, we show that the backward problem is ill-posed; the fractional Landweber method and the fractional Tikhonov method are used to deal with this inverse problem, and the regularized solution is also obtained. We present convergence rates for the regularized solution to the exact solution by using an a priori regularization parameter choice rule and an a posteriori parameter choice rule. Finally, we present a numerical example to illustrate the proposed method.
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-020-02712-y