New Definitions about A I -Statistical Convergence with Respect to a Sequence of Modulus Functions and Lacunary Sequences

In this paper, using an infinite matrix of complex numbers, a modulus function and a lacunary sequence, we generalize the concept of I -statistical convergence, which is a recently introduced summability method. The names of our new methods are A I -lacunary statistical convergence and strongly A I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms 2018-04, Vol.7 (2), p.24
Hauptverfasser: Kişi, Ömer, Gümüş, Hafize, Savas, Ekrem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, using an infinite matrix of complex numbers, a modulus function and a lacunary sequence, we generalize the concept of I -statistical convergence, which is a recently introduced summability method. The names of our new methods are A I -lacunary statistical convergence and strongly A I -lacunary convergence with respect to a sequence of modulus functions. These spaces are denoted by S θ A I , F and N θ A I , F , respectively. We give some inclusion relations between S A I , F , S θ A I , F and N θ A I , F . We also investigate Cesáro summability for A I and we obtain some basic results between A I -Cesáro summability, strongly A I -Cesáro summability and the spaces mentioned above.
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms7020024