New Definitions about A I -Statistical Convergence with Respect to a Sequence of Modulus Functions and Lacunary Sequences
In this paper, using an infinite matrix of complex numbers, a modulus function and a lacunary sequence, we generalize the concept of I -statistical convergence, which is a recently introduced summability method. The names of our new methods are A I -lacunary statistical convergence and strongly A I...
Gespeichert in:
Veröffentlicht in: | Axioms 2018-04, Vol.7 (2), p.24 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, using an infinite matrix of complex numbers, a modulus function and a lacunary sequence, we generalize the concept of I -statistical convergence, which is a recently introduced summability method. The names of our new methods are A I -lacunary statistical convergence and strongly A I -lacunary convergence with respect to a sequence of modulus functions. These spaces are denoted by S θ A I , F and N θ A I , F , respectively. We give some inclusion relations between S A I , F , S θ A I , F and N θ A I , F . We also investigate Cesáro summability for A I and we obtain some basic results between A I -Cesáro summability, strongly A I -Cesáro summability and the spaces mentioned above. |
---|---|
ISSN: | 2075-1680 2075-1680 |
DOI: | 10.3390/axioms7020024 |