Retrieving Phytoplankton Size Class from the Absorption Coefficient and Chlorophyll A Concentration Based on Support Vector Machine
The phytoplankton size class (PSC) plays an important role in biogeochemical processes in the ocean. In this study, a regional model of PSCs is proposed to retrieve vertical PSCs from the total minus water absorption coefficient (at-w(λ)) and Chlorophyll a concentration (Chla). The PSC model is deve...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2019-05, Vol.11 (9), p.1054 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The phytoplankton size class (PSC) plays an important role in biogeochemical processes in the ocean. In this study, a regional model of PSCs is proposed to retrieve vertical PSCs from the total minus water absorption coefficient (at-w(λ)) and Chlorophyll a concentration (Chla). The PSC model is developed by first reconstructing phytoplankton absorption and Chla from at-w(λ), and then extracting PSC from them using the support vector machine (SVM). In situ bio-optical data collected in the South China Sea from 2006 to 2013 were used to train the SVM. The proposed PSC model was subsequently validated using an independent PSC dataset from the Northeast South China Sea Cruise in 2015. The results indicate that the PSC model performed better than the three components model, with a value of r2 between 0.35 and 0.66, and the absolute percentage difference between 56% and 181%. On the whole, our PSC model shows a remarkable utility in terms of inferring vertical PSCs from the South China Sea. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs11091054 |