Surface discoloration analysis and lignin degradation fragments identification of UV-irradiated moso bamboo (Phyllostachys pubescens Mazel)
Color changes caused by artificial UV radiation of Moso bamboo (Phyllostachys pubescens Mazel) were recorded as a function of exposure time to obtain the maximum absorption trend by the Kubelka-Munk (K-M) spectra. Lignin photolysis into smaller molecules was evaluated using spectrophotometry and gas...
Gespeichert in:
Veröffentlicht in: | Bioresources 2015, Vol.10 (1), p.1617-1626 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Color changes caused by artificial UV radiation of Moso bamboo (Phyllostachys pubescens Mazel) were recorded as a function of exposure time to obtain the maximum absorption trend by the Kubelka-Munk (K-M) spectra. Lignin photolysis into smaller molecules was evaluated using spectrophotometry and gas chromatography-mass spectrometry (GC-MS) analysis. Results showed that the K-M absorption peak increased in the yellow and red regions (360 to 500 nm) when compared with the untreated sample, which was in accordance with the yellow-red shift by visual observation. The maximum absorption of the K-M spectra from UVB phototreated bamboo was in the UV region. GC-MS analysis showed that benzene carbonyls, organic acid, and esters were the major types of photolysized molecules of bamboo lignin, which were derived from the C-C bonds adjacent to the α-carbonyl. UV irradiation (295 to 400 nm) resulted in the breakdown of carbonyl and unsaturated C-C groups conjugated to aromatic ring at the Cα ., which partly contributed to the quick discoloration at the initial 100 h of UV irradiation. |
---|---|
ISSN: | 1930-2126 1930-2126 |
DOI: | 10.15376/biores.10.1.1617-1626 |