Fabrication of Non-Implant 3D Printed Skin

Many bandages tend to be harmful when being removed from the human skin. This is a crucial issue, especially faced by burn victims. When bandages are removed from the burn wound, they tend to be harmful by peeling off the newly formed layer of skin over the burn wound. Such nature causes the patient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chuan, Yong Leng, Pandya, Shivani Amish Kumar
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many bandages tend to be harmful when being removed from the human skin. This is a crucial issue, especially faced by burn victims. When bandages are removed from the burn wound, they tend to be harmful by peeling off the newly formed layer of skin over the burn wound. Such nature causes the patient to endure a longer recovery time with additional pain. The objective of this project is to 3D print artificial skin for the victims of burn wounds by using natural gelation. The main aim for creating the artificial skin will be used in place of the current burn wound treatment techniques of dressing the wounds in bandages. The inner layer of this skin was lined with a natural adhesive, a thin layer of agar-agar, which has been reinforced with crushed eggshells to increase its adhesive strength and durability. The synthesized gel contained non adhesive behavior, yet aids in wound healing abilities. Applying hydrocolloids ensures that the wound is kept cool and the gel also ensures efficient heat transfer. This was done so that less sweating occurs on the patient. Based on the experiments that were conducted, the results conclude that the best ratio of artificial skin layer would be 2:1 of agar gel: crushed eggshells. This golden ratio of gel: crushed eggshells for the longest period of time for attachment on the skin without sweating, is achieved. The skin will be printed using Acrylonitrile-Butadiene-Styrene (ABS). The colour of the skin and the shape of the skin was individually designed for each specific patient. The inner gel has the capabilities of reducing the rehabilitation time, without compromising the comfort of the patient. This approach has the potential to be used as a new method to treat burn wounds..
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/201815202016