Distribución de vacuna Covid-19: Combinando SEIR y Machine Learning
Este estudio tiene como objetivo general construir un modelo epidémico con control por vacunación para el Covid-19 en El Salvador. Se propone la combinación de modelos epidemiológicos SEIR (Susceptibles, Expuestos, Infectados o Recuperados) y la estimación de parámetros usando machine learning y red...
Gespeichert in:
Veröffentlicht in: | Uniciencia 2022-01, Vol.36 (1), p.1-15 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | spa |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Este estudio tiene como objetivo general construir un modelo epidémico con control por vacunación para el Covid-19 en El Salvador. Se propone la combinación de modelos epidemiológicos SEIR (Susceptibles, Expuestos, Infectados o Recuperados) y la estimación de parámetros usando machine learning y redes de contacto. El proyecto se desarrolló siguiendo tres fases: a) Análisis: se realizó la identificación de factores o variables críticas o claves del fenómeno en estudio, se definió, diseñó y construyó el modelo a utilizar junto con sus parámetros y componentes. b) Simulación: una vez construido el modelo, se desarrolla una simulación de este. La simulación permitió modificar variables, implementar alternativas y hacer modificaciones al modelo sin afectar al sistema real, lo cual es de gran utilidad en la toma de decisiones y elaboración de resultados y recomendaciones. Se desarrollan las simulaciones con datos poblacionales de El Salvador. c) Optimización: se evaluaron diferentes escenarios en los cuales se aplican medidas de control por vacunación y medidas de distanciamiento social, con el objetivo de identificar la estrategia óptima. Como resultado del estudio se identificó como mejor estrategia para el control de la enfermedad: vacunar a la población vulnerable y mantener medidas de distanciamiento social, la combinación de estas dos políticas brindó los mejores resultados en función de disminuir el impacto de la infección y de minimizar los costos del tratamiento. Al final, se brindan recomendaciones a las autoridades de salud gubernamentales para la distribución y aplicación del tratamiento. |
---|---|
ISSN: | 2215-3470 2215-3470 |
DOI: | 10.15359/ru.36-1.12 |