3D-Printed Gentamicin-Releasing Poly-ε-Caprolactone Composite Prevents Fracture-Related Staphylococcus aureus Infection in Mice
Bacterial infections are a serious healthcare complication in orthopedic and trauma surgery worldwide. Compared to systemic, local antibiotic prophylaxis has been shown to provide a higher antibiotic dose and bioavailability at the bone site with minimum toxic effects. However, there are still not e...
Gespeichert in:
Veröffentlicht in: | Pharmaceutics 2022-06, Vol.14 (7), p.1363 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bacterial infections are a serious healthcare complication in orthopedic and trauma surgery worldwide. Compared to systemic, local antibiotic prophylaxis has been shown to provide a higher antibiotic dose and bioavailability at the bone site with minimum toxic effects. However, there are still not enough biomaterial and antibiotic combinations available for personalized implant sizes for patients. The aim of this study was to develop a bone fixation plate coating made of a composite of poly-ε-caprolactone, hydroxyapatite and halloysite nanotubes loaded with gentamicin sulphate and fabricated via fused filament fabrication 3D printing technology. The mechanical and thermal properties of the biomaterial were analyzed. The in vitro release kinetics of gentamicin sulphate were evaluated for 14 days showing a burst release during the first two days that was followed by a sustained release of bactericidal concentrations. The composite loaded with 2 and 5% gentamicin sulphate exhibited complete antimicrobial killing of Staphylococcus aureus in an ex vivo mouse femur fixation plate infection model. Moreover, a fixation plate of the composite loaded with 5% of gentamicin sulphate was able to prevent S. aureus infection in the bone and surrounding tissue in an in vivo mouse bone fixation plate infection model 3 days post-surgery. In conclusion, the newly developed composite material successfully prevented infection in vivo. Additionally, the ability to use fused filament fabrication 3D printing to produce patient-specific implants may provide a wider range of personalized solutions for patients. |
---|---|
ISSN: | 1999-4923 1999-4923 |
DOI: | 10.3390/pharmaceutics14071363 |