Optimal Capacity Configuration of Pumped-Storage Units Used to Retrofit Cascaded Hydropower Stations

As flexible resources, cascaded hydropower stations can regulate the fluctuations caused by wind and photovoltaic power. Constructing pumped-storage units between two upstream and downstream reservoirs is an effective method to further expand the capacity of flexible resources. This method transform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2023-12, Vol.16 (24), p.8049
Hauptverfasser: Li, Yang, Hong, Feilong, Ge, Xiaohui, Zhang, Xuesong, Zhao, Bo, Wu, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As flexible resources, cascaded hydropower stations can regulate the fluctuations caused by wind and photovoltaic power. Constructing pumped-storage units between two upstream and downstream reservoirs is an effective method to further expand the capacity of flexible resources. This method transforms cascaded hydropower stations into a cascaded pumped-hydro-energy storage system. In this paper, a flexibility reformation planning model of cascaded hydropower stations retrofitted with pumped-storage units under a hybrid system composed of thermal, wind, and photovoltaic power is established with the aim of investigating the optimal capacity of pumped-storage units. First, a generative adversarial network and a density peak clustering algorithm are utilized to generate typical scenarios to deal with the seasonal fluctuation of renewable energy generation, natural water inflow, and loads. Then, a full-scenario optimization method is proposed to optimize the operation costs of multiple scenarios considering the variable-speed operation characteristics of pumped storage and to obtain a scheme with better comprehensive economy. Meanwhile, the proposed model is retransformed into a mixed-integer linear programming problem to simplify the solution. Case studies in Sichuan province are used to demonstrate the effectiveness of the proposed model.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16248049