Effects of Prebiotic Dietary Fibers on the Stimulation of the Mucin Secretion in Host Cells by In Vitro Gut Microbiome Consortia

The gastrointestinal microbiota are important for human health. Dietary intake may modulate the composition and metabolic function of the gut microbiome. We examined how the breakdown of prebiotic dietary fibers by the gut microbiome affects mucin secretion by intestinal epithelial cells. Metagenomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foods 2024-10, Vol.13 (19), p.3194
Hauptverfasser: Kim, Seonghun, Kang, Ji Young, Nguyen, Quang Anh, Lee, Jung-Sook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The gastrointestinal microbiota are important for human health. Dietary intake may modulate the composition and metabolic function of the gut microbiome. We examined how the breakdown of prebiotic dietary fibers by the gut microbiome affects mucin secretion by intestinal epithelial cells. Metagenomic analyses of in vitro gut microbiome consortia revealed taxonomic profiles and genetic diversity of carbohydrate-active enzymes that digest polysaccharides. Two independent consortia exhibited different abilities to produce acetic acid, propionic acid, and butyric acid via the fermentation of polysaccharides derived from dietary fibers of grains and mushrooms. Although acetic acid generally had the highest concentration, the ratios of butyric acid and propionic acid to acetic acid varied depending on the polysaccharide source. These short-chain fatty acids affected morphological differentiation and mucin secretion in HT-29 human intestinal epithelial cells. These results suggest that prebiotic dietary fibers can be digested and metabolized by the gut microbiome to short-chain fatty acids, which can affect gut epithelial cells both directly and indirectly via the modulation of the gut microbiota and their enzymes.
ISSN:2304-8158
2304-8158
DOI:10.3390/foods13193194