A QSAR study of environmental estrogens based on a novel variable selection method
A large number of descriptors were employed to characterize the molecular structure of 53 natural, synthetic, and environmental chemicals which are suspected of disrupting endocrine functions by mimicking or antagonizing natural hormones and may thus pose a serious threat to the health of humans and...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2012-05, Vol.17 (5), p.6126-6145 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A large number of descriptors were employed to characterize the molecular structure of 53 natural, synthetic, and environmental chemicals which are suspected of disrupting endocrine functions by mimicking or antagonizing natural hormones and may thus pose a serious threat to the health of humans and wildlife. In this work, a robust quantitative structure-activity relationship (QSAR) model with a novel variable selection method has been proposed for the effective estrogens. The variable selection method is based on variable interaction (VSMVI) with leave-multiple-out cross validation (LMOCV) to select the best subset. During variable selection, model construction and assessment, the Organization for Economic Co-operation and Development (OECD) principles for regulation of QSAR acceptability were fully considered, such as using an unambiguous multiple-linear regression (MLR) algorithm to build the model, using several validation methods to assessment the performance of the model, giving the define of applicability domain and analyzing the outliers with the results of molecular docking. The performance of the QSAR model indicates that the VSMVI is an effective, feasible and practical tool for rapid screening of the best subset from large molecular descriptors. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules17056126 |