Extending representation formulas for boundary voltage perturbations of low volume fraction to very contrasted conductivity inhomogeneities
Imposing either Dirichlet or Neumann boundary conditions on the boundary of a smooth bounded domain $\Omega$, we study the perturbation incurred by the voltage potential when the conductivity is modified in a set of small measure. We consider $\left(\gamma_{n}\right)_{n\in\mathbb{N}}$, a sequence of...
Gespeichert in:
Veröffentlicht in: | Comptes rendus. Mathématique 2022-02, Vol.360 (G2), p.127-150 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Imposing either Dirichlet or Neumann boundary conditions on the boundary of a smooth bounded domain $\Omega$, we study the perturbation incurred by the voltage potential when the conductivity is modified in a set of small measure. We consider $\left(\gamma_{n}\right)_{n\in\mathbb{N}}$, a sequence of perturbed conductivity matrices differing from a smooth $\gamma_{0}$ background conductivity matrix on a measurable set well within the domain, and we assume $\left(\gamma_{n}-\gamma_{0}\right)\gamma_{n}^{-1}\left(\gamma_{n}-\gamma_{0}\right)\to0$ in $L^{1}(\Omega)$. Adapting the limit measure, we show that the general representation formula introduced for bounded contrasts in this article can be extended to unbounded sequencesof matrix valued conductivities. |
---|---|
ISSN: | 1778-3569 1631-073X 1778-3569 |
DOI: | 10.5802/crmath.273 |