An FSV analysis approach to verify the robustness of the triple-correlation analysis theoretical framework

Among all the gas disasters, gas concentration exceeding the threshold limit value (TLV) has been the leading cause of accidents. However, most systems still focus on exploring the methods and framework for avoiding reaching or exceeding TLV of the gas concentration from viewpoints of impacts on geo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-06, Vol.13 (1), p.9621-9621, Article 9621
Hauptverfasser: Wu, Robert M. X., Zhang, Zhongwu, Zhang, Huan, Wang, Yongwen, Shafiabady, Niusha, Yan, Wanjun, Gou, Jinwen, Gide, Ergun, Zhang, Siqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Among all the gas disasters, gas concentration exceeding the threshold limit value (TLV) has been the leading cause of accidents. However, most systems still focus on exploring the methods and framework for avoiding reaching or exceeding TLV of the gas concentration from viewpoints of impacts on geological conditions and coal mining working-face elements. The previous study developed a Trip-Correlation Analysis Theoretical Framework and found strong correlations between gas and gas, gas and temperature, and gas and wind in the gas monitoring system. However, this framework's effectiveness must be examined to determine whether it might be adopted in other coal mine cases. This research aims to explore a proposed verification analysis approach—First-round—Second-round—Verification round (FSV) analysis approach to verify the robustness of the Trip-Correlation Analysis Theoretical Framework for developing a gas warning system. A mixed qualitative and quantitative research methodology is adopted, including a case study and correlational research. The results verify the robustness of the Triple-Correlation Analysis Theoretical Framework. The outcomes imply that this framework is potentially valuable for developing other warning systems. The proposed FSV approach can also be used to explore data patterns insightfully and offer new perspectives to develop warning systems for different industry applications.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-35900-3