Submonolayer biolasers for ultrasensitive biomarker detection

Biomarker detection is key to identifying health risks. However, designing sensitive and single-use biosensors for early diagnosis remains a major challenge. Here, we report submonolayer lasers on optical fibers as ultrasensitive and disposable biosensors. Telecom optical fibers serve as distributed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Light, science & applications science & applications, 2023-12, Vol.12 (1), p.292-292, Article 292
Hauptverfasser: Gong, Chaoyang, Yang, Xi, Tang, Shui-Jing, Zhang, Qian-Qian, Wang, Yanqiong, Liu, Yi-Ling, Chen, Yu-Cheng, Peng, Gang-Ding, Fan, Xudong, Xiao, Yun-Feng, Rao, Yun-Jiang, Gong, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biomarker detection is key to identifying health risks. However, designing sensitive and single-use biosensors for early diagnosis remains a major challenge. Here, we report submonolayer lasers on optical fibers as ultrasensitive and disposable biosensors. Telecom optical fibers serve as distributed optical microcavities with high Q-factor, great repeatability, and ultralow cost, which enables whispering-gallery laser emission to detect biomarkers. It is found that the sensing performance strongly depends on the number of gain molecules. The submonolayer lasers obtained a six-order-of-magnitude improvement in the lower limit of detection (LOD) when compared to saturated monolayer lasers. We further achieve an ultrasensitive immunoassay for a Parkinson’s disease biomarker, alpha-synuclein (α-syn), with a lower LOD of 0.32 pM in serum, which is three orders of magnitude lower than the α-syn concentration in the serum of Parkinson’s disease patients. Our demonstration of submonolayer biolaser offers great potentials in high-throughput clinical diagnosis with ultimate sensitivity.
ISSN:2047-7538
2047-7538
DOI:10.1038/s41377-023-01335-8