Innovative optimization for enhancing Pb2+ biosorption from aqueous solutions using Bacillus subtilis

Toxic heavy metal pollution has been considered a major ecosystem pollution source. Unceasing or rare performance of Pb2+ to the surrounding environment causes damage to the kidney, nervous, and liver systems. Microbial remediation has acquired prominence in recent decades due to its high efficiency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in microbiology 2024-08, Vol.15, p.1384639
Hauptverfasser: El-Sharkawy, Reyad M., Khairy, Mohamed, Abbas, Mohamed H. H., Zaki, Magdi E. A., El-Hadary, Abdalla E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Toxic heavy metal pollution has been considered a major ecosystem pollution source. Unceasing or rare performance of Pb2+ to the surrounding environment causes damage to the kidney, nervous, and liver systems. Microbial remediation has acquired prominence in recent decades due to its high efficiency, environment-friendliness, and cost-effectiveness.IntroductionToxic heavy metal pollution has been considered a major ecosystem pollution source. Unceasing or rare performance of Pb2+ to the surrounding environment causes damage to the kidney, nervous, and liver systems. Microbial remediation has acquired prominence in recent decades due to its high efficiency, environment-friendliness, and cost-effectiveness.The lead biosorption by Bacillus subtilis was optimized by two successive paradigms, namely, a definitive screening design (DSD) and an artificial neural network (ANN), to maximize the sorption process.MethodsThe lead biosorption by Bacillus subtilis was optimized by two successive paradigms, namely, a definitive screening design (DSD) and an artificial neural network (ANN), to maximize the sorption process.Five physicochemical variables showed a significant influence (p < 0.05) on the Pb2+ biosorption with optimal levels of pH 6.1, temperature 30°C, glucose 1.5%, yeast extract 1.7%, and MgSO4.7H2O 0.2, resulting in a 96.12% removal rate. The Pb2+ biosorption mechanism using B. subtilis biomass was investigated by performing several analyses before and after Pb2+ biosorption. The maximum Pb2+ biosorption capacity of B. subtilis was 61.8 mg/g at a 0.3 g biosorbent dose, pH 6.0, temperature 30°C, and contact time 60 min. Langmuir's isotherm and pseudo-second-order model with R2 of 0.991 and 0.999 were suitable for the biosorption data, predicting a monolayer adsorption and chemisorption mechanism, respectively.ResultsFive physicochemical variables showed a significant influence (p < 0.05) on the Pb2+ biosorption with optimal levels of pH 6.1, temperature 30°C, glucose 1.5%, yeast extract 1.7%, and MgSO4.7H2O 0.2, resulting in a 96.12% removal rate. The Pb2+ biosorption mechanism using B. subtilis biomass was investigated by performing several analyses before and after Pb2+ biosorption. The maximum Pb2+ biosorption capacity of B. subtilis was 61.8 mg/g at a 0.3 g biosorbent dose, pH 6.0, temperature 30°C, and contact time 60 min. Langmuir's isotherm and pseudo-second-order model with R2 of 0.991 and 0.999 were suitable for the biosorption data, predicting a m
ISSN:1664-302X
1664-302X
DOI:10.3389/fmicb.2024.1384639